Iterative Process with Errors of Nonlinear Equations Involvingm-Accretive Operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularization of Nonlinear Ill-posed Equations with Accretive Operators

We study the regularization methods for solving equations with arbitrary accretive operators. We establish the strong convergence of these methods and their stability with respect to perturbations of operators and constraint sets in Banach spaces. Our research is motivated by the fact that the fixed point problems with nonexpansive mappings are namely reduced to such equations. Other important ...

متن کامل

An Iterative Scheme for Solving Nonlinear Equations with Monotone Operators

An iterative scheme for solving ill-posed nonlinear operator equations with monotone operators is introduced and studied in this paper. A discrete version of the Dynamical Systems Method (DSM) algorithm for stable solution of ill-posed operator equations with monotone operators is proposed and its convergence is proved. A discrepancy principle is proposed and justified. A priori and a posterior...

متن کامل

Stability of Stationary Transport Equations with Accretive Collision Operators

In this paper we consider transport equations with accretive collision operators. We characterize when the equation has a unique solution and show that in this case the solution is stable under small perturbations of the collision operator and the initial value. In one case in which there is more than one solution we show how to make a special selection of a solution, which is then stable again...

متن کامل

Iterative Approximations of Zeroes for Accretive Operators in Banach Spaces

In this paper, we introduce and study a new iterative algorithm for approximating zeroes of accretive operators in Banach spaces.

متن کامل

Iterative solutions for zeros of multivalued accretive operators

In the sequel, we shall denote the single-valued normalized duality map by j. Let F (T ) = {x ∈ E : Tx = x} denote the set of all fixed point for a mapping T . We write xn ⇀ x (respectively xn ∗ ⇀ x) to indicate that the sequence xn weakly (respectively weak∗) converges to x; as usual xn → x will symbolize strong convergence. A mapping A : D(A) ⊂ E → 2 is called to be accretive if for all x, y ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1997

ISSN: 0022-247X

DOI: 10.1006/jmaa.1997.5356